Are you sure you want to hide the widget forever? If you need it back, please clear your cookies.
Content
Colors
Navigation
Selected Language
English (United States)
All Languages
Accessibility Statement
Our Commitment to Accessibility
We are committed to ensuring digital accessibility for people with disabilities. We are continually improving the user experience for everyone, and applying the relevant accessibility standards to help users with various disabilities access our website effectively.
Compliance Status
Our website strives to conform to the Web Content Accessibility Guidelines (WCAG) 2.1 Level AA standards. We also aim to be compliant with the Americans with Disabilities Act (ADA) and the European Accessibility Act requirements. These guidelines and regulations explain how to make web content more accessible to people with a wide range of disabilities. We acknowledge that some aspects of our website may not yet achieve full compliance, and we are actively working to address these areas.
Accessibility Features Available
Our website implements the Accessibly App, which provides a variety of tools to enhance website accessibility:
Visual Adjustments
Bigger Text: Increase text size up to 3x for better readability (WCAG 2.1/1.4.4)
Bigger Cursor: Enhanced cursor visibility for easier navigation
Color Adjustments: Invert colors, adjust contrast, brightness, and saturation
Grayscale Mode: Convert website to grayscale for users with visual impairments
Hide Images: Reduce visual distractions for easier reading
Reading and Navigation Aids
Reading Line: Adds a guide line to help follow text
Reading Mask: Places a mask over text to isolate lines and enhance focus
Readable Fonts: Converts to highly legible fonts for better comprehension
Highlight Links: Makes links more prominent for easier navigation
Dyslexic Fonts: Special typography for users with dyslexia
Page Structure: Simplified layout options for easier navigation
Assistive Technologies
Keyboard Navigation: Full website control using keyboard (Tab, Shift+Tab, Enter)
Alt Text for Images: AI-generated image descriptions where manual ones aren't provided
Read Page Aloud: Text-to-speech functionality
Stop Animations: Pause motion content for users with vestibular disorders
Limitations and Feedback
Despite our best efforts to ensure accessibility, there may be some limitations. Content provided by third parties, user-generated content, or certain legacy pages may not be fully accessible. We are continuously working to improve our website's accessibility.
We welcome your feedback on the accessibility of our website. If you encounter any barriers or have suggestions for improvement, please contact us. We are committed to addressing these issues promptly.
Technical Information
The accessibility features on this website are provided through the Accessibly App, which utilizes several technologies including HTML, CSS, JavaScript, and various frameworks to enhance accessibility. Our implementation strives to be compatible with major screen readers and assistive technologies.
Legal Disclaimer
While we strive to adhere to WCAG 2.1 Level AA standards and provide accessible content, we cannot guarantee that our website will be accessible to all users under all circumstances. This website is provided 'as is' without any representations or warranties, express or implied.
In no event shall we be liable for any damages arising from or related to:
Inability to access or use the website
Any alleged non-compliance with accessibility laws or regulations
Any disruption or errors in the functionality of accessibility features
By using this website, you agree to hold us harmless from any claims related to website accessibility issues. We are committed to addressing accessibility barriers in good faith but cannot guarantee immediate resolution in all cases.
Contact Us
If you have any questions about our accessibility efforts or encounter any barriers while using our website, please contact us.
Your medical cannabis journey simplified: find partnered dispensaries, explore pricing options, earn rewards, and get answers to FAQs, all in one spot.
Experts are taking a bird’s eye view of an exciting and rapidly evolving area in cannabis research known as the endocannabinoidome (eCBome). Simply put, the endocannabinoidome is like the expansion pack of the endocannabinoid system (ECS) (1).
The eCBome may hold the keys to regulating and balancing complex bodily processes and diseases. This includes the ECS, the microbiota-gut-brain axis, obesity, diabetes, metabolic syndrome, energy intake and storage, inflammation and oxidative stress, glucose and fat metabolism, and pancreatic and liver health (2,3,4).
While these are common health problems that modern medicine still hasn’t solved, the eCBome is a common thread among them. Understanding the bigger picture is the next step toward treating them.
At its core, the eCBome is an intricate signaling system. The eCBome includes the ECS plus all other components that are also influenced by cannabinoids, endocannabinoids, and endocannabinoid-like molecules. Outside of the ECS, the eCBome influences include a broad network of receptors, enzymes, immune and bacterial cells, minerals, neurotransmitters, and even hormones (5).
Soon after the discovery of the ECS in the ’90s, researchers found that endocannabinoids and similar compounds act not only on cannabinoid (CB1 and CB2) receptors but also on many other receptor families. The subsequent discoveries on endocannabinoids and non-CB receptors led to the idea of an expanded endocannabinoid system, coined the “endocannabinoidome” in 2013 by Dr. Vincenzo Di Marzo (6).
Cannabinoids and chemically similar compounds are multi-target molecules that influence many processes at the same time, opening many new and exciting therapeutic avenues. There is a lot left to discover and learn about how all the moving pieces fit together and balance each other out in wellness and disease.
The Difference Between the Endocannabinoid System (ECS) and Endocannabinoidome (eCBome)
Like the ECS, the eCBome is a complex signaling system that uses fatty-based molecules as messengers. However, there are a lot more components involved in the eCBome than the ECS.
There are only three categorical parts of the ECS, although they are enough to be present in virtually every organ system. The classic ECS components are the endocannabinoids anandamide and 2-AG, CB receptors (CB1 and CB2), and enzymes that make and break down endocannabinoids (NAPE-PLD, DGLα, DGLβ, FAAH, AND MAGL) (1,7,8). The eCBome starts with the ECS and continues its work elsewhere.
Beyond the ECS, the eCBome also includes over 100 fatty acid-derived signaling molecules and receptors, plus over 50 enzymes (9). Further key differences are that it includes our whole lipidome (fatty acid-based signaling network) and our microbiome (gut bacteria network) (5). These complex systems are communicating with each other as well as our brain, affecting our inner balance of bacteria, inflammation, gut, and mental health. This is the idea behind the microbiome-gut-brain axis and why the eCBome holds missing pieces of the puzzle (3).
The wider reach of the eCBome means it is involved in regulating pain, inflammation, mood, appetite, gut permeability, and energy balance (4,5,6). These are very similar functions to the endocannabinoid system but are now seen in an even more complex way with myriad actors on the cast that don’t always get along.
How Does the Endocannabinoidome Work?
The eCBome explains the expansive therapeutic benefits that cannabinoids may provide that aren’t explained by simply activating CB1 and CB2. All of our lipid signaling networks, including endocannabinoids and endocannabinoid-like compounds, are linked together through the eCBome because they share so many common pathways. These pathways are two-way streets of communication and have multiple intersections, causing the complexity.
Endocannabinoids vs. Endocannabinoid-like Molecules
The endocannabinoids anandamide and 2-AG are made on demand when needed. They are an important part of our homeostasis, or internal balance, in response to signals like pain, inflammation, behavior, appetite, and much more (1).
Endocannabinoids are known for being lipid (fat-based) messengers between and within cells. They have a special ability to travel against the flow of the original signals (retrograde transmission) to give cells feedback.
See If You Qualify For Medical Marijuana -Select Your State!
In addition to anandamide and 2-AG, the eCBome includes over a hundred other chemically similar compounds called “endocannabinoid-like” molecules. They are also fat-based signaling molecules often mixed with amino acids (e.g., NAAAs, PEA, OEA) (10). These endocannabinoid-like molecules can come from our own cells as well as from gut bacteria, explaining how they communicate with us and change our body and mind.
Cannabinoid Receptors
Cannabinoid receptors CB1 and CB2 were actually first discovered using THC, not endocannabinoids. This sparked the interest in finding the endocannabinoids, which at first they thought only bound to CB1 and CB2 receptors.
However, researchers quickly discovered this was not true. Some researchers today, including Dr. Di Marzo, think that CB1 and CB2 receptors should instead be called “THC receptors” because there are so many more receptors that interact with other cannabinoids and endocannabinoids (9).
Non-cannabinoid Receptors
Endocannabinoids are known to also interact with receptors like TRPV1, PPARG, and GPR55 [10]. Other known eCBome receptors include PPARα, GPR18, GPR119, Cav3, TRPV2, and TRPV4. The variety of receptors outside of CB1 and CB2 explains the vast potential of the eCBome.
Unique eCBome Messengers
Outside of fat-based molecules, the eCBome also employs over 20 neurotransmitters, hormones, proteins, and minerals. Below is a table from the CannaKeys 360 research group summarizing each of these specialty signals and their associated implications (5).
The eCBome, like the ECS, is influenced by a variety of genetic and environmental factors. Our genes are the underlying fabric of our eCBome network; alterations here propagate serious downstream effects. Environmental things like diet, exercise, mindfulness, and lifestyle choices can promote certain gut bacteria and eCBome molecules over others (9).
For instance, the ratio of omega-6 to omega-3 in our food proportionately changes our endocannabinoid tone because they are the building blocks of endocannabinoids (13). If there is too much omega-6 and not enough omega-3, typical for Western diets, then there may be too little endocannabinoids produced, leading to chronic conditions (14). The ideal dietary ratio of omega-6 to omega-3 should be around 5:1, but our modern diets are estimated to be around 20:1.
Negative factors like high-calorie, Western diets, lack or presence of nutritional factors, lack of physical activity, and uncontrolled recreational drug or even cannabis use can modify our eCBome balance and push us over the edge into chronic disease (9).
How May the Endocannabinoidome Be Used Therapeutically?
An imbalance of the eCBome is now being linked to disorders like idiopathic inflammation, metabolic disease, chronic enteropathies (gut problems), and neuroinflammatory diseases (11).
The current eCBome research focus is on understanding its relationships with the microbiome (gut bacteria), metabolism, and inflammation around the brain, gut, liver, and pancreas (4). Particularly in regard to pancreatic cancer, obesity, diabetes, depression, neuropathic pain, and chronic liver disease (4,10,11,12). These connections are just starting to appear, so there isn’t any conclusive clinical research regarding the eCBome yet.
Mapping and testing the complex relationships of the eCBome can help us make targeted or custom cannabinoid therapies for such diseases one day. It can also help guide patients to improve their eCBome through mind-body medicine, food and nutrition, the microbiome, lipidome, and the constituents of cannabis (5).
Final Takeaway
The eCBome is showing us that there is even more that can be done beyond CB1 and CB2 receptors. Understanding its complexities will take a lot more time and considerable research effort. Crossing this next frontier in cannabis medicine is inevitable but offers a high payout in the long run.
2. Veilleux, A., Di Marzo, V., & Silvestri, C. (2019). The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Current Diabetes Reports, 19(11), 117.https://doi.org/10.1007/s11892-019-1248-9
3. Forte, N., Fernández-Rilo, A. C., Palomba, L., Di Marzo, V., & Cristino, L. (2020). Obesity Affects the Microbiota–Gut–Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. International Journal of Molecular Sciences, 21(5), Article 5.https://doi.org/10.3390/ijms21051554
4. Barré, T., Di Marzo, V., Marcellin, F., Burra, P., & Carrieri, P. (2023). Expanding Research on Cannabis-Based Medicines for Liver Steatosis: A Low-Risk High-Reward Way Out of the Present Deadlock? Cannabis and Cannabinoid Research, 8(1), 5–11.https://doi.org/10.1089/can.2022.0014
5. Blesching, U. Endocannabinoidome (eCBome). (n.d.). Cannakeys. Retrieved April 27, 2023, from https://cannakeys.com/endocannabinoidome-ecbome/
6. Maione, S., Costa, B., & Di Marzo, V. (2013). Endocannabinoids: A unique opportunity to develop multitarget analgesics. Pain, 154 Suppl 1, S87–S93. https://doi.org/10.1016/j.pain.2013.03.023
7. Benavides, A. All About Anandamide: Taking Cannabinoid Treatment to New Heights. (2021, October 25). Veirheal Cannabis Central. https://www.veriheal.com/blog/what-is-anandamide/
8. Di Marzo, V. (2018). New approaches and challenges to targeting the endocannabinoid system. Nature Reviews Drug Discovery, 17(9), 623–639. https://doi.org/10.1038/nrd.2018.115
9. Di Marzo, V., & Silvestri, C. (2019). Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients, 11(8), Article 8. https://doi.org/10.3390/nu11081956
10. Forteza, F., Giorgini, G., & Raymond, F. (2021). Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome. Cells, 10(4), Article 4. https://doi.org/10.3390/cells10040938
11. Schiano Moriello, A., Di Marzo, V., & Petrosino, S. (2022). Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals, 12(3), Article 3. https://doi.org/10.3390/ani12030348
12. Falasca, V., & Falasca, M. (2022). Targeting the Endocannabinoidome in Pancreatic Cancer. Biomolecules, 12(2), Article 2. https://doi.org/10.3390/biom12020320
14. Bosch-Bouju, C., Layé, S., Bosch-Bouju, C., & Layé, S. (2016). Dietary Omega-6/Omega-3 and Endocannabinoids: Implications for Brain Health and Diseases. In Cannabinoids in Health and Disease. IntechOpen. https://doi.org/10.5772/62498
Dr. Abraham Benavides is a worldwide cannabis consultant, alum, and full-tuition merit scholar of the George Washington University School of Medicine & Health Sciences.
Abe survived severe COVID-19 infection and lives with new disabilities including LongCOVID, POTS, and PTSD. Abe is passionate about social justice and ending the stigma around mental health and cannabis. He loves being outdoors with his wife and pug, Bruschetta. At Veriheal, Abe contributes medical review, fact-checking, and writing.
Currently, 24 states sell cannabis recreationally. If you are in one of these states, it’s understandable that you might feel tempted to forget about the medical card process. Even if you qualify as a patient, it’s an application process that does take some information and patience. While recreational cannabis is available in many states, there…
What gives cannabis its powerful effects, rich aroma, and frosty appearance? The answer lies in crystal-like structures called trichomes that cover the surface of cannabis flowers. This is where the cannabis cultivation magic happens because they produce and store the majority of compounds responsible for the plant’s potency, flavor, and therapeutic benefits. Trichomes are the…
If pain is an aspect of your cannabis journey, you might be interested in a Green Dragon tincture. This homemade creation will not turn you into a magic dragon, but it could make you feel on top of the world if you are dealing with chronic pain. Pain can slow us down. When the body…
Cannabis is known for its significant effect on the human brain—which is what makes it so beneficial for helping people with mental health conditions. However, the portion of the brain responsible for speech can also be affected. After consuming cannabis, some people may experience acute, subtle speech deviations or difficulties, primarily in maintaining the logical…
There is a lot to learn when it comes to the world of cannabis concentrates. In particular, proper banger health is essential for any dab rig. The devices used to smoke concentrates are not called a bowl, but one of the most popular forms of consumption seems to be using a dab rig. Dab rigs…
The statements made regarding cannabis products on this website have not been evaluated by the Food and Drug Administration (FDA). Cannabis is not an FDA-approved substance and is still illegal under federal law. The information provided on this website is intended for educational purposes only and is not intended to diagnose, treat, cure, or prevent any disease. It is not intended as medical advice and should not be considered as a substitute for advice from a healthcare professional. We strongly recommend that you consult with a physician or other qualified healthcare provider before using any cannabis products. The use of any information provided on this website is solely at your own risk.
2. Veilleux, A., Di Marzo, V., & Silvestri, C. (2019). The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Current Diabetes Reports, 19(11), 117.https://doi.org/10.1007/s11892-019-1248-9
3. Forte, N., Fernández-Rilo, A. C., Palomba, L., Di Marzo, V., & Cristino, L. (2020). Obesity Affects the Microbiota–Gut–Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. International Journal of Molecular Sciences, 21(5), Article 5.https://doi.org/10.3390/ijms21051554
4. Barré, T., Di Marzo, V., Marcellin, F., Burra, P., & Carrieri, P. (2023). Expanding Research on Cannabis-Based Medicines for Liver Steatosis: A Low-Risk High-Reward Way Out of the Present Deadlock? Cannabis and Cannabinoid Research, 8(1), 5–11.https://doi.org/10.1089/can.2022.0014
5. Blesching, U. Endocannabinoidome (eCBome). (n.d.). Cannakeys. Retrieved April 27, 2023, from https://cannakeys.com/endocannabinoidome-ecbome/
6. Maione, S., Costa, B., & Di Marzo, V. (2013). Endocannabinoids: A unique opportunity to develop multitarget analgesics. Pain, 154 Suppl 1, S87–S93. https://doi.org/10.1016/j.pain.2013.03.023
7. Benavides, A. All About Anandamide: Taking Cannabinoid Treatment to New Heights. (2021, October 25). Veirheal Cannabis Central. https://www.veriheal.com/blog/what-is-anandamide/
8. Di Marzo, V. (2018). New approaches and challenges to targeting the endocannabinoid system. Nature Reviews Drug Discovery, 17(9), 623–639. https://doi.org/10.1038/nrd.2018.115
9. Di Marzo, V., & Silvestri, C. (2019). Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients, 11(8), Article 8. https://doi.org/10.3390/nu11081956
10. Forteza, F., Giorgini, G., & Raymond, F. (2021). Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome. Cells, 10(4), Article 4. https://doi.org/10.3390/cells10040938
11. Schiano Moriello, A., Di Marzo, V., & Petrosino, S. (2022). Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals, 12(3), Article 3. https://doi.org/10.3390/ani12030348
12. Falasca, V., & Falasca, M. (2022). Targeting the Endocannabinoidome in Pancreatic Cancer. Biomolecules, 12(2), Article 2. https://doi.org/10.3390/biom12020320
14. Bosch-Bouju, C., Layé, S., Bosch-Bouju, C., & Layé, S. (2016). Dietary Omega-6/Omega-3 and Endocannabinoids: Implications for Brain Health and Diseases. In Cannabinoids in Health and Disease. IntechOpen. https://doi.org/10.5772/62498